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Exponential sums

Let f(x) ∈ Fq[x] be a polynomial over a finite field with q = pd elements, where p is a
rational prime. Define the exponential sum

S1(f) :=
∑

x∈Fq

ζTr(f(x))
p ∈ Z[ζp].

A basic problem is

(1) as a complex number, |S1(f)| =?
(2) as a p-adic number, |S1(f)|p =?
(3) as an algebraic number, degS1(f) =?
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L-function

The first two questions have been studied extensively in the literature. Define

L(t, f) :=
∏

x∈Fp

(
1 − TrFq(x)/Fp

(f(x))tdeg x
)−1

= exp
(∑

k

Sk(f) t
k

k

)

where Sk(f) :=
∑

x∈F
qk
ζ

Tr(f(x))
p ∈ Z[ζp].

Theorem (Dwork-Bombieri-Grothendick)
L(t, f) is a rational function.

Write
L(t, f) =

∏
j(1 − βjt)∏
i(1 − αit)

.

Then
Sk(f) =

∑
i

αk
i −

∑
j

βk
j .
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Sheaf

How to estimate the characteristic roots αi and βj? We need `-adic method. To
describe it, let’s recall the definition of sheaves.

Given a topological space X, there is a site Top(X) with

(1) objects: the open subsets of X;
(2) morphisms: the injection of open sets;
(3) coverings: normal open coverings.

A sheaf F on a topological space X over a field E is a contravariant functor
Top(X)op → Vect/E, which can be uniquely glued locally. That’s to say, for any open
covering U = ∪iUi,

F(U) →
∏

i

F(Ui) ⇒
∏
i,j

F(Ui ∩ Uj)

is exact.
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Étale site

Let X be a scheme. Denote by Xét the site with

(1) objects: étale scheme X ′ → X;
(2) morphisms: étale morphisms;
(3) coverings: {ϕi : X ′

i → X ′} with X ′ = ∪ϕi(X ′
i).

Fix a prime ` 6= p and let E be a finite extension of Q`. An `-adic sheaf is a sheaf on Xét
over E (which is constructible at every finite level).
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Swan conductor

Let K be c.d.v.f, with higher ramification groups I(r), r ⩾ 0. For any E-representation
M of P , we have a decomposition M = ⊕M(x), such that

M(0) = MP , M(x)I(x) = 0, M(x)I(y) = M(x), y > x > 0.

We call x a break if M(x) 6= 0. Define

Sw(M) =
∑

x dimM(x).
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Curves

Let C be a proper smooth geometrically connected curve over a perfect field F, with
function field K = F(C). For any closed point x ∈ C(F), we have the completion Kx.

For any non-empty open U ⊂ C, we have an equivalence of abelian categories

{lisse E-sheaves on U} −→ Repc
Eπ1(U, η)

F 7−→ Fη.

Since π1(U, η) is a quotient of Gal(K/K), the decomposition group Dx ⊂ Gal(K/K)
acts on Fη. We can define Swan conductor of F at x. If x ∈ U , the action of Ix is trivial.

We will take F = Fp, C = P1 and U = Gm.
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`-adic method

Assume that µp ⊆ E. Deligne constructed a certain locally free of rank one `-adic
sheaf F`(f) over E on Ga,Fp

= SpecFp[X], such that

L(t, f) =
∏

i

det(1 − tFrob,Hi
c)(−1)i+1

and
Sk(f) =

∑
i

(−1)iTr(Frobk,Hi
c).

Here, Frob is the geometric Frobenius (inverse of α 7→ αp), Hi
c = Hi

c(Ga,Fp
,F`(f)) is the

compact cohomology.
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`-adic method, continue

Denote by ωij the eigenvalues of Frob on Hi
c, then

Sk(f) =
∑
ij

(−1)iωk
ij .

Denote by Bi = dimE Hi
c the Betti number.

Theorem (Deligne)
ωij is an algebraic integer and all its conjugates over Q has same absolute value
qrij/2, where the weight 0 ⩽ rij ⩽ i are integers.

Thus
|Sk| ⩽

∑
i

Biq
ki/2.
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General case

In general,
(1) V a closed variety over Fq of AN ,
(2) ψ a non-trivial additive character on Fq, ψk = ψ ◦ TrF

qk /Fq
,

(3) f a regular function on V defined over Fq,
(4) χ a multiplicative character on F×

q , χk = χ ◦ NFqn /Fq
,

(5) g an invertible regular function on V .
Define

Sk =
∑

x∈V (F
qk )
ψk(f(x))χk(g(x)).

Then Deligne’s results still hold in this case. Moreover, Bombieri proved that the number
of characteristic roots is at most

(4 max {deg V + 1, deg f} + 5)2N+1.
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Kloosterman sums

Now we will consider

V = V (X1 · · ·Xn − a), f = X1 + · · · +Xn.

Let χ = {χ1, . . . , χn} be an unordered n-tuple of multiplicative characters
χi : F×

q → µq−1. Define the Kloosterman sum as

Kln(ψ,χ, q, a) =
∑

x1···xn=a
xi∈Fq

χ1(x1) · · ·χn(xn)ψ
(
TrFq/Fp

(x1 + · · · + xn)
)
.

In this case, there are n characteristic roots with same weight n− 1. Hence
|Kln| ⩽ nq(n−1)/2.
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Galois action

Clearly, Kln ∈ Z[µpc], where
c = lcmi{ord(χi)}

divides q − 1. Write

Gal(Q(µpc)/Q) =
{
σtτw | t ∈ (Z/pZ)×, w ∈ (Z/cZ)×},

where
σt(ζp) = ζt

p, σt(ζc) = ζc,

τw(ζp) = ζp, τw(ζc) = ζw
c .

A basic observation tells

σtτwKln(ψ,χ, q, a) =
∏

χ(t)−wKln(ψ,χw, q, atn).

To study the generating fields of Kln, we need to consider the distinctness of different
Kloosterman sums.
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Trivial character

When χ = 1 = {1, . . . , 1} is trivial, it’s easy to see that

a, b conjugate =⇒ Kln(ψ,1, q, a) = Kln(ψ,1, q, b).

When p > (2n2d + 1)2 (Fisher), or p ⩾ (d− 1)n+ 2 and p does not divide a certain integer
(Wan), this is necessary. In general, it’s conjectured that it’s true when p ⩾ nd. Thus

deg Kln(ψ,1, q, a) = p− 1
(p− 1, n)

under these conditions.
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Kloosterman sheaves

For our purpose, we need a different sheaf. Deligne and Katz defined the Kloosterman
sheaf

Kl = Kln,q(ψ,χ)

on Gm ⊗ Fq = SpecFq[X,X−1], with the following properties:

(1) Kl is lisse (locally constant at every finite level) of rank n and pure of weight n− 1.
(2) For any a ∈ F×

q , Tr
(
Froba,Kla) = (−1)n−1Kln(ψ,χ, q, a).

(3) Kl is tame at 0 (Swan= 0).
(4) Kl is totally wild with Swan conductor 1 at ∞. So all ∞-breaks are 1/n.
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Fisher’s descent

Fisher gave a descent of Kloosterman sheaves along an extension of finite fields. For
any a ∈ F×

q , he defined a lisse sheaf Fa(χ) on Gm ⊗ Fp, such that
Fa(χ)|Gm ⊗ Fq =

⊗
σ∈Gal(Fq/Fp)

(
t 7→ σ(a)tn

)∗Kln(ψ ◦ σ−1,χ ◦ σ−1).

(1) Fa(χ) is lisse of rank nd and pure of weight d(n− 1).
(2) For any t ∈ F×

p , Tr
(
Frobt,Fa(χ)t

)
= (−1)(n−1)dKln(ψ,χ, q, atn).

(3) Fa(χ) is tame at 0 and its ∞-breaks are at most 1.
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Key lemma

Lemma
Let F ,F ′ be lisse sheaves on Gm ⊗Fp of same rank r and pure of the same weight
w. Assume that there is a root of unity λ such that for any t ∈ F×

p , we have

Tr
(
Frobt,Ft) = λTr

(
Frobt,F ′

t).

Let G be a geometrically irreducible sheaf of rank s on Gm ⊗ Fp, pure of weight
w, such that G | Gm ⊗ Fp occurs exactly once in F | Gm ⊗ Fp. Then G | Gm ⊗ Fp

occurs at least once in F ′ | Gm ⊗ Fp, provided that p > [2rs(M0 + M∞) + 1]2,
where Mη is the largest η-break of F ⊕ F ′.
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Key lemma, proof

Assume not. Applying the Lefschetz Trace Formula to G∨ ⊗ F and G∨ ⊗ F ′, we have

2∑
i=0

(−1)iTr
(
Frob,Hi

c(G∨ ⊗ F)
)

= λ
2∑

i=0
(−1)iTr

(
Frob,Hi

c(G∨ ⊗ F ′)
)
.

Apply Euler-Poincaré formula

h0
c(F) − h1

c(F) + h2
c(F)

= rank F · χc(Gm ⊗ Fp) − Sw0(F) − Sw∞(F)

to estimate Tr(Frob,H1
c) (weight ⩽ 1 by Weil II).
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Corollary

The n-tuple χ is called Kummer-induced if there exsists a non-trivial character Λ such
that χ = χΛ := {χ1Λ, . . . , χnΛ} as unordered n-tuples. In this case,∏

χ =
∏

(χΛ) = Λn∏χ and thus Λn = 1.
Assume that p > 2n+ 1 and χ is not Kummer-induced. Then Fa(χ) has a highest

weight with multiplicity one. Thus it has a subsheaf Ga(χ) such that, as representations of
the Lie algebra g(Fa(χ)), Ga(χ) is the irreducible sub-representation with highest weight.
Moreover, it is geometrically irreducible and occurs exactly once in Fa(χ) over Gm ⊗ Fp.
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Corollary, continue

Corollary
Let a, b ∈ F×

q and let χ and ρ be n-tuples of multiplicative characters χi, ρj :
F×

q → Q×
` . Assume that p > (2n2d + 1)2, χ is not Kummer-induced and

Kln(ψ,χ, q, a) = λKln(ψ,ρ, q, b)

for a fixed root of unity λ ∈ µq−1. Then Ga(χ) ⊗ L∏χ | Gm ⊗ Fp occurs at least
once in Fb(ρ) ⊗ L∏ρ | Gm ⊗ Fp.

Here Lχ is a rank one lisse sheaf on Gm ⊗ Fp such that for t ∈ F×
p ,

Tr(Frobt, (Lχ)t) = χ(t).
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Corollary, proof

Denote by

F = Fa(χ) ⊗ L∏χ, F ′ = Fb(ρ) ⊗ L∏ρ, G = Ga(χ) ⊗ L∏χ.

For t ∈ F×
p , we have σtλ = λ and thus

(−1)(n−1)dTr
(
Frobt,Ft) =

∏
χ(t) · Kln(ψ,χ, q, atn)

=σt
(
Kln(ψ,χ, q, a)

)
= λσt

(
Kln(ψ,ρ, q, b)

)
=λ

∏
ρ(t) · Kln(ψ,ρ, q, btn) = (−1)(n−1)dλTr

(
Frobt,F ′

t).

Apply Lemma to r = s = nd,M0 = 0,M∞ ⩽ 1.
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Distinctness

Now

Ga(χ) ⊗ L∏χ ↪→ Fb(ρ) ⊗ L∏ρ, Gb(ρ) ⊗ L∏ρ ↪→ Fa(χ) ⊗ L∏χ.

Thus the highest weight λa(χ) = λb(ρ). Derived from this, and combining Fisher’s
arguments, we have:

Theorem (Z.)
Let a, b ∈ F×

q . Assume that χ,ρ are not Kummer-induced and neither of them is
of type (ξ1, ξ

−1
1 , 1,Λ2)ξ2. If p > (2n2d + 1)2 and

Kln(ψ,χ, q, a) = λKln(ψ,ρ, q, b)

for some λ ∈ µq−1, then there exists σ ∈ Gal(Fq/Fp) and a multiplicative character
η, such that b = σ(a) and ρ = η · (χ ◦ σ−1) as unordered tuples. Moreover, either
both Kloosterman sums vanish or η(b) = λ−1.
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Non-vanishingness

The last step is to show the non-vanishingness.
Theorem

If p > (3n − 1)Cχ − n and for any i, j, χi = χj if χn
i = χn

j , then Kln(ψ,χ, q, a) is
nonzero. Here

Cχ = max
i,j

lcm
(
ord(χi), ord(χj)

)
(1)

is the supremum of least common multipliers of the orders of any two characters
in χ.
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Non-vanishingness, continue

We can express Kln as Gauss sums

(q − 1)Kln(ψ,χ, q, a) =
q−2∑
m=0

ωm(a)
n∏

i=1
g(m+ si)

by Fourier transform on F×
q , where χi = ωsi for a Teichmüller character. What we need to

do is to proof there is a unique m such that the valuation of ∏n
i=1 g(m+ si) is minimal.
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Main result

Theorem (Z.)
If p > max

{
(2n2d + 1)2, (3n− 1)Cχ − n

}
and for any i, j, χi = χj if χn

i = χn
j , then

Kln(ψ,χ, q, a) generates Q(µpc)H , where H consists of those σtτw such that there
exists an integer β and a character η satisfying

t = λaβ
1 , λ

n1 = 1, χw = ηχqβ
1 , η(a) =

∏
χw(t).

Here n1 = (n, p − 1), q1 = #Fp(a(p−1)/n1) and a1 ∈ F×
p such that a

n/n1
1 =

NFq1 /Fp
(a(1−p)/n1) = a(1−q1)/n1.
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An example: n = 2 case

Let χ = {1, χ}, where χ is a multiplicative character of order c 6= 2. If
p > max

{
(22d+1 + 1)2, 5c− 2

}
, then Kl(ψ,χ, pd, a) generates Q(µpc)H , where

H =



〈τq1σa1 , σ−1, τ−1〉, if χ(−1) = 1, χ(a) = 1;
〈τ−q1σa1 , σ−1〉, if χ(−1) = 1, χ(a) = χ(a1) = −1;
〈τqα

1
σaα

1
, σ−1〉, if χ(−1) = 1, χ(a)α 6= 1;

〈τq1σ−a1 , τ−1σ−1〉, if χ(−1) = −1, χ(a) = χ(a1) = −1;
〈τq1σa1 , τ−1〉 if χ(−1) = −1, χ(a) = 1;
〈τq1σa1 , τ−1σ−1〉, if χ(−1) = −1, χ(a) = −1, χ(a1) = 1;
〈τ

q
α/2
1
σ−a

α/2
1

〉, if χ(−1) = −1, 2 | α, χ(a) 6= ±1;

〈τqα
1
σaα

1
〉, if χ(−1) = −1, 2 ∤ α, χ(a) 6= ±1.

q1 = #Fp(a(1−p)/2), a1 = a(1−q1)/2 and α is the order of χ(a1) ∈ µp−1.
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Remark

Consider the Kloosterman sums

Sk = Kl(ψ,χ ◦ NF
qk /Fq

, qk, a).

If p > max
{

(2n2dk + 1)2, (3n− 1)Cχ − n
}
, then Q(Sk) = Q(µpc)H , where H consists

of those σtτw such that there exists an integer β and a character η on F×
q satisfying

t = λaβ
1 , λ

n1 = 1, χw = ηχqβ
1 , η(a) = γ ·

∏
χw(t), γk = 1.

Thus Q(Sk) = Q(Sk−c) since γc = 1.
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Remark, continue

The L-function
L(T ) = exp

( ∞∑
k=1

T k

k
Sk

)
is a rational function. Thus the sequence {Sk}k is linear recurrence sequence. The
sequence {Q(Sk)}k⩾N is periodic of period r for some N (Wan, Yin). Thus if
p > max

{(
2n2d(N+r) + 1

)2
, (3n− 1)Cχ − n

}
, the generating field of Sk is determined

by the previous equations for any k. For this purpose, we need to decrease the bound
(2n2d + 1)2 and estimate the period r and N . We conjecture that Sk has the predicted
generating field if p > 3ndc.
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